Do tej pory na blogu przedstawiałem przede wszystkim gotowe i znane rozwiązania algorytmiczne, ale rzadko pokazywałem, jak od podstaw coś zrobić, czego nie znajdziemy w podręcznikach do algorytmiki. Za to możemy znaleźć w podręcznikach do informatyki. Pokażę w tym wpisie, w jaki sposób, wykorzystując prostą matematykę, zrobić coś, co działa i wyświetla więcej niż ciągi liczb. A dokładniej — stworzymy prosty, animowany zegar analogowy.
Czytaj więcejMatematyka
Ostatnio zapoznaliśmy się ze względnie prostą operacją potęgowania. Prostą, bo w końcu to tylko powtarzanie jednego z najbardziej podstawowych działań aż do uzyskania wyniku. Zainteresujmy się teraz, jak algorytmicznie podejść do operacji odwrotnej do potęgowania, która już do tak prostych nie należy. Porozmawiajmy o pierwiastkowaniu.
Czytaj więcejPotęgowanie to dość podstawowa, a jednocześnie przydatna operacja w matematyce. Jednak wykonując je według definicji, możemy nie dać rady zrobić tego szybko, szczególnie gdy podnosimy liczby do wysokich potęg. Mimo to jest na to sposób, jak można potęgi obliczać szybko, i to na tyle prostym algorytmem, że jest zwykle jednym z pierwszych, które poznajemy przy nauce programowania. Opowiedzmy sobie o nim, przetestujmy, a także sprawdźmy, czy naprawdę jest taki szybki.
Czytaj więcejObliczanie największego wspólnego dzielnika dwóch liczb to prawdopodobnie jeden z pierwszych algorytmów, które poznajemy podczas swojej edukacji. Zarazem jest to też bardzo proste do zapamiętania. Omówmy sobie to klasyczne podejście, a także różne inne podejścia.
Czytaj więcejW codziennym zastosowaniu oprócz wszechobecnego systemu dziesiętnego utrzymał się do naszych czasów również system rzymski. Zapisując wiele nazw czy imion, nie wyobrażamy sobie, żeby zapisać je z użyciem cyfr arabskich — w końcu „Benedykt XVI” wygląda znacznie poważniej niż „Benedykt 16.”. Nas jednak interesuje inna strona systemu rzymskiego, czyli jak zaprogramować jego obsługę. Stoją za tym proste algorytmy, które są zwykle zadaniami na kursach podstaw programowania, dlatego spróbujmy napisać je wspólnie.
Czytaj więcejW poprzednim artykule dość szczegółowo opisałem test Millera-Rabina służący do szybkiego sprawdzania pierwszości liczb. Tym razem porównajmy sobie jego działanie z innymi szybkimi, probabilistycznymi testami pierwszości i sprawdźmy, jak wypadają one w porównaniu do bezbłędnej metody naiwnej.
Czytaj więcejWiemy już: czym są liczby pierwsze, jak sprawdzać, czy liczba jest pierwsza, jak w najprostszy sposób znajdować je, a także poznaliśmy teorię stojącą za znajdowaniem dużych liczb pierwszych. Przejdźmy zatem do praktyki. Czas napisać algorytm, który w krótkim czasie pozwoli nam znaleźć bardzo duże liczby pierwsze, tak jak to się robi w codziennych zastosowaniach.
Czytaj więcejDo tej pory przedstawiłem, czym są liczby pierwsze, ich zastosowania, jak możemy sprawdzać pierwszość liczb oraz jak możemy prostymi sposobami znajdować je. Jednak wszystko to, co do tej pory opowiedzieliśmy sobie, jest w dużej mierze zabawą. Jak poruszyłem już na samym początku serii, w kryptografii wykorzystuje się liczby pierwsze 2048-bitowe, więc w systemie dziesiętnym mogą one mieć nawet 617 cyfr. Dowiedzmy się więcej, jak jesteśmy w stanie odkryć tak duże, a nawet i większe liczby pierwsze. Na razie tylko w teorii.
Czytaj więcejOstatnio opisałem, czym są liczby pierwsze, a także pokazałem prosty, niemal 800-letni algorytm do ich testowania. Jednak nie kończmy na tym tematu. O liczbach pierwszych można mówić dużo, dlatego kontynuujmy. Tym razem pokażę, jakie mamy najprostsze sposoby na znajdowanie liczb pierwszych.
Czytaj więcejLiczby pierwsze to jeden z ważniejszych terminów w matematyce, do tego mający dość istotne zastosowanie praktyczne. Na samym początku przygody z tym tematem przedstawmy sobie teorię, a także najprostsze testy pierwszości.
Czytaj więcej